| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 | 
							- #pragma once
 
- struct Quaternion4f
 
- {
 
-     float x, y, z, w;
 
- };
 
- static Quaternion4f gQuatRot[4] =
 
- {   // { x*sin(theta/2), y*sin(theta/2), z*sin(theta/2), cos(theta/2) }
 
-     // => { 0, 0, sin(theta/2), cos(theta/2) } (since <vec> = { 0, 0, +/-1})
 
-     { 0.f, 0.f, 0.f /*sin(0)*/, 1.f /*cos(0)*/},    // ROTATION_0, theta = 0 rad
 
-     { 0.f, 0.f, (float)sqrt(2) * 0.5f /*sin(pi/4)*/, -(float)sqrt(2) * 0.5f /*cos(pi/4)*/}, // ROTATION_90, theta = pi/4 rad
 
-     { 0.f, 0.f, 1.f /*sin(pi/2)*/, 0.f /*cos(pi/2)*/},  // ROTATION_180, theta = pi rad
 
-     { 0.f, 0.f, -(float)sqrt(2) * 0.5f /*sin(3pi/4)*/, -(float)sqrt(2) * 0.5f /*cos(3pi/4)*/}    // ROTATION_270, theta = 3pi/2 rad
 
- };
 
- inline void QuatMultiply(Quaternion4f& result, const Quaternion4f& lhs, const Quaternion4f& rhs)
 
- {
 
-     result.x = lhs.w * rhs.x + lhs.x * rhs.w + lhs.y * rhs.z - lhs.z * rhs.y;
 
-     result.y = lhs.w * rhs.y + lhs.y * rhs.w + lhs.z * rhs.x - lhs.x * rhs.z;
 
-     result.z = lhs.w * rhs.z + lhs.z * rhs.w + lhs.x * rhs.y - lhs.y * rhs.x;
 
-     result.w = lhs.w * rhs.w - lhs.x * rhs.x - lhs.y * rhs.y - lhs.z * rhs.z;
 
- }
 
- inline Quaternion4f QuatMultiply(const Quaternion4f& lhs, const Quaternion4f& rhs)
 
- {
 
-     Quaternion4f output;
 
-     QuatMultiply(output, lhs, rhs);
 
-     return output;
 
- }
 
- inline Quaternion4f QuatMake(float x, float y, float z, float w)
 
- {
 
-     Quaternion4f q = {x, y, z, w};
 
-     return q;
 
- }
 
- inline Quaternion4f QuatIdentity()
 
- {
 
-     return gQuatRot[0];
 
- }
 
- inline Quaternion4f QuatScale(const Quaternion4f& q, float s)
 
- {
 
-     return QuatMake(s * q.x, s * q.y, s * q.z, s * q.w);
 
- }
 
- inline float QuatNormSquared(const Quaternion4f& q)
 
- {
 
-     return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
 
- }
 
- inline Quaternion4f QuatConjugate(const Quaternion4f& q)
 
- {
 
-     return QuatMake(-q.x, -q.y, -q.z, q.w);
 
- }
 
- inline Quaternion4f QuatInverse(const Quaternion4f& q)
 
- {
 
-     return QuatScale(QuatConjugate(q), 1.0f / QuatNormSquared(q));
 
- }
 
- inline Vector3f QuatToEuler(const Quaternion4f& q)
 
- {
 
-     return VecMake(
 
-         atan2f(2.0f * (q.w * q.y + q.x * q.z),
 
-             1.0f - 2.0f * (q.y * q.y + q.x * q.x)),
 
-         asinf(2.0f * (q.w * q.x - q.z * q.y)),
 
-         atan2f(2.0f * (q.w * q.z + q.y * q.x),
 
-             1.0f - 2.0f * (q.x * q.x + q.z * q.z)));
 
- }
 
- inline float QuatNorm(const Quaternion4f& q)
 
- {
 
-     return sqrtf(QuatNormSquared(q));
 
- }
 
- inline Quaternion4f QuatNormalize(const Quaternion4f& q)
 
- {
 
-     return QuatScale(q, 1.0f / QuatNorm(q));
 
- }
 
- inline Quaternion4f QuatDifference(const Quaternion4f& a, const Quaternion4f& b)
 
- {
 
-     return QuatMultiply(QuatInverse(b), a);
 
- }
 
- inline Quaternion4f QuatRotationFromTo(const Vector3f& src, const Vector3f& dest)
 
- {
 
-     // Based on Stan Melax's article in Game Programming Gems
 
-     float mag0 = VecMagnitude(src);
 
-     if (mag0 < FLT_EPSILON)
 
-         return QuatIdentity();
 
-     float mag1 = VecMagnitude(dest);
 
-     if (mag1 < FLT_EPSILON)
 
-         return QuatIdentity();
 
-     Vector3f v0 = VecScale(1.0f / mag0, src);
 
-     Vector3f v1 = VecScale(1.0f / mag1, dest);
 
-     float d = VecDotProduct(v0, v1);
 
-     // If dot == 1, vectors are the same
 
-     if (d >= (1.0f - 1e-6f))
 
-         return QuatIdentity();
 
-     if (d < (1e-6f - 1.0f))
 
-         return gQuatRot[2];
 
-     float s = sqrtf((1.0f + d) * 2.0f);
 
-     float i = 1.0f / s;
 
-     Vector3f c = VecCrossProduct(v0, v1);
 
-     return QuatNormalize(QuatMake(
 
-         c.x * i, c.y * i, c.z * i, s * 0.5f));
 
- }
 
 
  |