SecP224R1FieldElement.cs 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  5. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  7. {
  8. internal class SecP224R1FieldElement
  9. : AbstractFpFieldElement
  10. {
  11. public static readonly BigInteger Q = SecP224R1Curve.q;
  12. protected internal readonly uint[] x;
  13. public SecP224R1FieldElement(BigInteger x)
  14. {
  15. if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
  16. throw new ArgumentException("value invalid for SecP224R1FieldElement", "x");
  17. this.x = SecP224R1Field.FromBigInteger(x);
  18. }
  19. public SecP224R1FieldElement()
  20. {
  21. this.x = Nat224.Create();
  22. }
  23. protected internal SecP224R1FieldElement(uint[] x)
  24. {
  25. this.x = x;
  26. }
  27. public override bool IsZero
  28. {
  29. get { return Nat224.IsZero(x); }
  30. }
  31. public override bool IsOne
  32. {
  33. get { return Nat224.IsOne(x); }
  34. }
  35. public override bool TestBitZero()
  36. {
  37. return Nat224.GetBit(x, 0) == 1;
  38. }
  39. public override BigInteger ToBigInteger()
  40. {
  41. return Nat224.ToBigInteger(x);
  42. }
  43. public override string FieldName
  44. {
  45. get { return "SecP224R1Field"; }
  46. }
  47. public override int FieldSize
  48. {
  49. get { return Q.BitLength; }
  50. }
  51. public override ECFieldElement Add(ECFieldElement b)
  52. {
  53. uint[] z = Nat224.Create();
  54. SecP224R1Field.Add(x, ((SecP224R1FieldElement)b).x, z);
  55. return new SecP224R1FieldElement(z);
  56. }
  57. public override ECFieldElement AddOne()
  58. {
  59. uint[] z = Nat224.Create();
  60. SecP224R1Field.AddOne(x, z);
  61. return new SecP224R1FieldElement(z);
  62. }
  63. public override ECFieldElement Subtract(ECFieldElement b)
  64. {
  65. uint[] z = Nat224.Create();
  66. SecP224R1Field.Subtract(x, ((SecP224R1FieldElement)b).x, z);
  67. return new SecP224R1FieldElement(z);
  68. }
  69. public override ECFieldElement Multiply(ECFieldElement b)
  70. {
  71. uint[] z = Nat224.Create();
  72. SecP224R1Field.Multiply(x, ((SecP224R1FieldElement)b).x, z);
  73. return new SecP224R1FieldElement(z);
  74. }
  75. public override ECFieldElement Divide(ECFieldElement b)
  76. {
  77. //return Multiply(b.Invert());
  78. uint[] z = Nat224.Create();
  79. Mod.Invert(SecP224R1Field.P, ((SecP224R1FieldElement)b).x, z);
  80. SecP224R1Field.Multiply(z, x, z);
  81. return new SecP224R1FieldElement(z);
  82. }
  83. public override ECFieldElement Negate()
  84. {
  85. uint[] z = Nat224.Create();
  86. SecP224R1Field.Negate(x, z);
  87. return new SecP224R1FieldElement(z);
  88. }
  89. public override ECFieldElement Square()
  90. {
  91. uint[] z = Nat224.Create();
  92. SecP224R1Field.Square(x, z);
  93. return new SecP224R1FieldElement(z);
  94. }
  95. public override ECFieldElement Invert()
  96. {
  97. //return new SecP224R1FieldElement(ToBigInteger().ModInverse(Q));
  98. uint[] z = Nat224.Create();
  99. Mod.Invert(SecP224R1Field.P, x, z);
  100. return new SecP224R1FieldElement(z);
  101. }
  102. /**
  103. * return a sqrt root - the routine verifies that the calculation returns the right value - if
  104. * none exists it returns null.
  105. */
  106. public override ECFieldElement Sqrt()
  107. {
  108. uint[] c = this.x;
  109. if (Nat224.IsZero(c) || Nat224.IsOne(c))
  110. return this;
  111. uint[] nc = Nat224.Create();
  112. SecP224R1Field.Negate(c, nc);
  113. uint[] r = Mod.Random(SecP224R1Field.P);
  114. uint[] t = Nat224.Create();
  115. if (!IsSquare(c))
  116. return null;
  117. while (!TrySqrt(nc, r, t))
  118. {
  119. SecP224R1Field.AddOne(r, r);
  120. }
  121. SecP224R1Field.Square(t, r);
  122. return Nat224.Eq(c, r) ? new SecP224R1FieldElement(t) : null;
  123. }
  124. public override bool Equals(object obj)
  125. {
  126. return Equals(obj as SecP224R1FieldElement);
  127. }
  128. public override bool Equals(ECFieldElement other)
  129. {
  130. return Equals(other as SecP224R1FieldElement);
  131. }
  132. public virtual bool Equals(SecP224R1FieldElement other)
  133. {
  134. if (this == other)
  135. return true;
  136. if (null == other)
  137. return false;
  138. return Nat224.Eq(x, other.x);
  139. }
  140. public override int GetHashCode()
  141. {
  142. return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7);
  143. }
  144. private static bool IsSquare(uint[] x)
  145. {
  146. uint[] t1 = Nat224.Create();
  147. uint[] t2 = Nat224.Create();
  148. Nat224.Copy(x, t1);
  149. for (int i = 0; i < 7; ++i)
  150. {
  151. Nat224.Copy(t1, t2);
  152. SecP224R1Field.SquareN(t1, 1 << i, t1);
  153. SecP224R1Field.Multiply(t1, t2, t1);
  154. }
  155. SecP224R1Field.SquareN(t1, 95, t1);
  156. return Nat224.IsOne(t1);
  157. }
  158. private static void RM(uint[] nc, uint[] d0, uint[] e0, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  159. {
  160. SecP224R1Field.Multiply(e1, e0, t);
  161. SecP224R1Field.Multiply(t, nc, t);
  162. SecP224R1Field.Multiply(d1, d0, f1);
  163. SecP224R1Field.Add(f1, t, f1);
  164. SecP224R1Field.Multiply(d1, e0, t);
  165. Nat224.Copy(f1, d1);
  166. SecP224R1Field.Multiply(e1, d0, e1);
  167. SecP224R1Field.Add(e1, t, e1);
  168. SecP224R1Field.Square(e1, f1);
  169. SecP224R1Field.Multiply(f1, nc, f1);
  170. }
  171. private static void RP(uint[] nc, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  172. {
  173. Nat224.Copy(nc, f1);
  174. uint[] d0 = Nat224.Create();
  175. uint[] e0 = Nat224.Create();
  176. for (int i = 0; i < 7; ++i)
  177. {
  178. Nat224.Copy(d1, d0);
  179. Nat224.Copy(e1, e0);
  180. int j = 1 << i;
  181. while (--j >= 0)
  182. {
  183. RS(d1, e1, f1, t);
  184. }
  185. RM(nc, d0, e0, d1, e1, f1, t);
  186. }
  187. }
  188. private static void RS(uint[] d, uint[] e, uint[] f, uint[] t)
  189. {
  190. SecP224R1Field.Multiply(e, d, e);
  191. SecP224R1Field.Twice(e, e);
  192. SecP224R1Field.Square(d, t);
  193. SecP224R1Field.Add(f, t, d);
  194. SecP224R1Field.Multiply(f, t, f);
  195. uint c = Nat.ShiftUpBits(7, f, 2, 0);
  196. SecP224R1Field.Reduce32(c, f);
  197. }
  198. private static bool TrySqrt(uint[] nc, uint[] r, uint[] t)
  199. {
  200. uint[] d1 = Nat224.Create();
  201. Nat224.Copy(r, d1);
  202. uint[] e1 = Nat224.Create();
  203. e1[0] = 1;
  204. uint[] f1 = Nat224.Create();
  205. RP(nc, d1, e1, f1, t);
  206. uint[] d0 = Nat224.Create();
  207. uint[] e0 = Nat224.Create();
  208. for (int k = 1; k < 96; ++k)
  209. {
  210. Nat224.Copy(d1, d0);
  211. Nat224.Copy(e1, e0);
  212. RS(d1, e1, f1, t);
  213. if (Nat224.IsZero(d1))
  214. {
  215. Mod.Invert(SecP224R1Field.P, e0, t);
  216. SecP224R1Field.Multiply(t, d0, t);
  217. return true;
  218. }
  219. }
  220. return false;
  221. }
  222. }
  223. }
  224. #pragma warning restore
  225. #endif