SecP128R1FieldElement.cs 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. #pragma warning disable
  3. using System;
  4. using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;
  5. using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
  6. namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Custom.Sec
  7. {
  8. internal class SecP128R1FieldElement
  9. : AbstractFpFieldElement
  10. {
  11. public static readonly BigInteger Q = SecP128R1Curve.q;
  12. protected internal readonly uint[] x;
  13. public SecP128R1FieldElement(BigInteger x)
  14. {
  15. if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
  16. throw new ArgumentException("value invalid for SecP128R1FieldElement", "x");
  17. this.x = SecP128R1Field.FromBigInteger(x);
  18. }
  19. public SecP128R1FieldElement()
  20. {
  21. this.x = Nat128.Create();
  22. }
  23. protected internal SecP128R1FieldElement(uint[] x)
  24. {
  25. this.x = x;
  26. }
  27. public override bool IsZero
  28. {
  29. get { return Nat128.IsZero(x); }
  30. }
  31. public override bool IsOne
  32. {
  33. get { return Nat128.IsOne(x); }
  34. }
  35. public override bool TestBitZero()
  36. {
  37. return Nat128.GetBit(x, 0) == 1;
  38. }
  39. public override BigInteger ToBigInteger()
  40. {
  41. return Nat128.ToBigInteger(x);
  42. }
  43. public override string FieldName
  44. {
  45. get { return "SecP128R1Field"; }
  46. }
  47. public override int FieldSize
  48. {
  49. get { return Q.BitLength; }
  50. }
  51. public override ECFieldElement Add(ECFieldElement b)
  52. {
  53. uint[] z = Nat128.Create();
  54. SecP128R1Field.Add(x, ((SecP128R1FieldElement)b).x, z);
  55. return new SecP128R1FieldElement(z);
  56. }
  57. public override ECFieldElement AddOne()
  58. {
  59. uint[] z = Nat128.Create();
  60. SecP128R1Field.AddOne(x, z);
  61. return new SecP128R1FieldElement(z);
  62. }
  63. public override ECFieldElement Subtract(ECFieldElement b)
  64. {
  65. uint[] z = Nat128.Create();
  66. SecP128R1Field.Subtract(x, ((SecP128R1FieldElement)b).x, z);
  67. return new SecP128R1FieldElement(z);
  68. }
  69. public override ECFieldElement Multiply(ECFieldElement b)
  70. {
  71. uint[] z = Nat128.Create();
  72. SecP128R1Field.Multiply(x, ((SecP128R1FieldElement)b).x, z);
  73. return new SecP128R1FieldElement(z);
  74. }
  75. public override ECFieldElement Divide(ECFieldElement b)
  76. {
  77. // return multiply(b.invert());
  78. uint[] z = Nat128.Create();
  79. Mod.Invert(SecP128R1Field.P, ((SecP128R1FieldElement)b).x, z);
  80. SecP128R1Field.Multiply(z, x, z);
  81. return new SecP128R1FieldElement(z);
  82. }
  83. public override ECFieldElement Negate()
  84. {
  85. uint[] z = Nat128.Create();
  86. SecP128R1Field.Negate(x, z);
  87. return new SecP128R1FieldElement(z);
  88. }
  89. public override ECFieldElement Square()
  90. {
  91. uint[] z = Nat128.Create();
  92. SecP128R1Field.Square(x, z);
  93. return new SecP128R1FieldElement(z);
  94. }
  95. public override ECFieldElement Invert()
  96. {
  97. // return new SecP128R1FieldElement(toBigInteger().modInverse(Q));
  98. uint[] z = Nat128.Create();
  99. Mod.Invert(SecP128R1Field.P, x, z);
  100. return new SecP128R1FieldElement(z);
  101. }
  102. // D.1.4 91
  103. /**
  104. * return a sqrt root - the routine verifies that the calculation returns the right value - if
  105. * none exists it returns null.
  106. */
  107. public override ECFieldElement Sqrt()
  108. {
  109. /*
  110. * Raise this element to the exponent 2^126 - 2^95
  111. *
  112. * Breaking up the exponent's binary representation into "repunits", we get:
  113. * { 31 1s } { 95 0s }
  114. *
  115. * Therefore we need an addition chain containing 31 (the length of the repunit) We use:
  116. * 1, 2, 4, 8, 10, 20, 30, [31]
  117. */
  118. uint[] x1 = this.x;
  119. if (Nat128.IsZero(x1) || Nat128.IsOne(x1))
  120. return this;
  121. uint[] x2 = Nat128.Create();
  122. SecP128R1Field.Square(x1, x2);
  123. SecP128R1Field.Multiply(x2, x1, x2);
  124. uint[] x4 = Nat128.Create();
  125. SecP128R1Field.SquareN(x2, 2, x4);
  126. SecP128R1Field.Multiply(x4, x2, x4);
  127. uint[] x8 = Nat128.Create();
  128. SecP128R1Field.SquareN(x4, 4, x8);
  129. SecP128R1Field.Multiply(x8, x4, x8);
  130. uint[] x10 = x4;
  131. SecP128R1Field.SquareN(x8, 2, x10);
  132. SecP128R1Field.Multiply(x10, x2, x10);
  133. uint[] x20 = x2;
  134. SecP128R1Field.SquareN(x10, 10, x20);
  135. SecP128R1Field.Multiply(x20, x10, x20);
  136. uint[] x30 = x8;
  137. SecP128R1Field.SquareN(x20, 10, x30);
  138. SecP128R1Field.Multiply(x30, x10, x30);
  139. uint[] x31 = x10;
  140. SecP128R1Field.Square(x30, x31);
  141. SecP128R1Field.Multiply(x31, x1, x31);
  142. uint[] t1 = x31;
  143. SecP128R1Field.SquareN(t1, 95, t1);
  144. uint[] t2 = x30;
  145. SecP128R1Field.Square(t1, t2);
  146. return Nat128.Eq(x1, t2) ? new SecP128R1FieldElement(t1) : null;
  147. }
  148. public override bool Equals(object obj)
  149. {
  150. return Equals(obj as SecP128R1FieldElement);
  151. }
  152. public override bool Equals(ECFieldElement other)
  153. {
  154. return Equals(other as SecP128R1FieldElement);
  155. }
  156. public virtual bool Equals(SecP128R1FieldElement other)
  157. {
  158. if (this == other)
  159. return true;
  160. if (null == other)
  161. return false;
  162. return Nat128.Eq(x, other.x);
  163. }
  164. public override int GetHashCode()
  165. {
  166. return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 4);
  167. }
  168. }
  169. }
  170. #pragma warning restore
  171. #endif