Table of Contents

VYo 17710 Lo U [Vi3 T d [V 1 1 OO PPN 2
=T LU T =T 41T 0 RN 2
SUPPOITEA DEVICES ..cuuienniiieiiiiieiiieniiiteierenirtnsertnsserensereeserenssssnsesenssssnssssssssssnsessnssssnsessnssssnsssssnsansnnes 3
Steps to establish CONNECHIONciiiieiiiiiiiiir s rs e s s esas s sesnssans 3

2] [UT=] doTo 1 o I 6 T3 ol OO TSRO P TP PTRPPRUPTO 3
2T I PP PP PP PPPPPP OIS 3
[173 oY1 d 41 02V Tor = o - T 4
oY o 1T o =TSP TP PPTP OIS 4
[[UT= o Tod d o] o L= [o T=T G 0 B T RN 4
) LA (o [T aTe WY [=1d oo To £ OO TPRRUOR TP 4
Properties @A IMETNOUS......cccii et e et e e e e ettt e e e e e st be e e e e s e tbaaeeeeeesantaaeeeesntaaseeesennsaseaaeaanes 5

(V7T oL £ o J M (=T 1 o IO OO PUUUURR 10

Arduino Unity Plugin

Requirements
1. Switch Scripting runtime version to 4.x as 3.5 is already deprecated
(found in Build Settings). No need to change on unity 2019.X and later.

Configuration

Scripting Runtime Version* | .NET 4.x Equivalent 4|

Scripting Backend (Mono 4]

Api Compatibility Level* | NET4x +]

C++ Compiler Configuratio| Release &)
2. Move the Plugin Folder to the main Assets Folder

Before After

For UWP

suNa >emngs
@ Inspector

0 Project Settings

Application UI

Display name BlueToothAPI_Pt
Description BlueToothAPI_F
File Type Associations

Name:

File Types

Please specify Name first,
[Add New]
Protocol

Narme: —

Misc

[]
[]
PC, Mac & Linux Standalone

Publishing Settings
Input Source
Capabilities

[|CodeGeneration

Xbox One

. ‘Android
.
E WebGL

f Facebook

formation

| 03D Preject %
| Local Machine #|
| Release]|
C]
]
m|
| Defaule 4]

3. ForiOS

General Signing & Capabilities Resource Tags Info Build Phases Build Rules

PROJECT Basic Customized All Combined Levels + Q-

a Unity-iPhone

TARGETS ¥ Architectures

< Unity-iPhone

I Unity-iPhone Tests Additional SDKs
» Architectures

And add “NSBluetoothAlwaysUsageDescription” in plist file.
Supported Devices

1. Android

2. i0S

3. MacOS

4. Windows PC
5. UWP

Steps to establish connection

Bluetooth Classic

1. Pair the Bluetooth device externally

2. Get instance of BluetoothHelper, specify the name of the Bluetooth device you want to

connect to if you know it

3. Implements BluetoothHelper events. [OnConnected, OnConnectionFailed,

OnDataReceived...]

4. Setthe stream manager (the way you want to split received stream bytes into messages
and format data before sending) using [setLengthBasedStream,
setTerminatorBasedStream, setFixedLengthBasedStream, setCustomStreamManager]
Scan for nearby devices (this step can be skipped)

Set the device name/address you want to connect to if not specified in step 2.
Call Connect function
Call start listening to start receiving data

O N w;

BLE
1. Get instance of BluetoothHelper, specify the name of the Bluetooth device you want to
connect to if you know it
2. Implements BluetoothHelper events. [OnConnected, OnConnectionFailed,
OnDataReceived, OnCharacteristicChanged, OnServiceNotFound...]

3. For serial way of communication 3. For BLE communication mode using GATT
set the stream manager services/characteristics
set Tx/Rx characteristic if using Subscribe to characteristics for
custom defined characteristics. notification/indication (this step can be
4. set Device name/address to connect skipped till after connection is
to established
5. Call Connect function 4. set Device name/address to connect to

5. Call Connect function

BluetoothDevice Class
Properties
1. DeviceName: returns the advertised name of the Bluetooth device
2. DeviceAddress: returns the mac address of the Bluetooth device.
3. Rssi: returns the received signal strength indicator of the Bluetooth device found while
scanning. If this value is not available, value 127 is returned.

BluetoothHelper Class
Static Vars and Methods

1. GetlInstance (string deviceName)
e deviceName: string identifying the Bluetooth module you are going to connect to
e Returns BluetoothHelper Instance
e If already called, returns the 1% instance of Bluetooth helper created.
e Throws:
i. BlueToothNotEnabledException: Bluetooth not turned on
ii. BlueToothNotSupportedException: Bluetooth not supported
iii. BlueToothNotReadyException: the Bluetooth device is not paired
iv. BlueToothPermissionNotGrantedException: this is caused by not moving
the plugin folder to the main assets folder
2. Getlnstance()
e Returns the BluetoothHelper Instance
e deviceName will be set later when attempting to connect
e This is helpful when there’s a need to scan for nearby Bluetooth and connect to
one of them based on the scan result
e If already called, returns the 1%t instance of Bluetooth helper created.
e Throws same exceptions as (1)
3. GetNewlnstance(string deviceName) & GetNewlnstance()
e Create a new instance of bluetoothHelper, used when needed to connect to
multiple devices. Each instance will have a unique id (integer)
4. GetlnstanceByld(int id)
e Returns a previously created instance given an id.
e [ftheidis incorrect, the result is null.

5. Bool SERIAL_COMM:
e Default: False => connect to destination device using Bluetooth
e True => connect to destination device using USB Cable. In this case, deviceName
variable refers to the COM port name (example: COM5)
e Serial communication is ONLY available on windows PC, and setting it to True for
android devices has no effect.
6. Bool BLUETOOTH_SIMULATION
e Default: False => Connect to actual Bluetooth device

e True => Emulate Bluetooth connected by providing a GUl interface to simulate
receiving messages
e This variable ONLY has effect on Windows PC so you can simulate connecting to
Bluetooth device if your laptop doesn’t have Bluetooth, so you can always
develop
e On not supported platforms, like i0OS, MacOS... this is the default mode
e SET THIS VARIABLE TO TRUE IF YOUR COMPUTER DOESN’T SUPPORT
BLUETOOTH
7. Bool BLE
e Default: False => use Bluetooth Classic technology
e True => use Bluetooth Low Energy technology
e Changing this value has no effect on windows version, since BLE is not currently
supported on Windows PC by this plugin. Only Android, MacOS and UWP.
Regarding 10S, only BLE is supported.
BLE is supported on UWP, and Bluetooth Classic on both Windows Desktop App
and UWP
8. Bool ASYNC_EVENTS
e Default : False => events raise by the plugin are synchronized with the main Ul
thread.
e True: the events are raised asynchronously independently from the Ul thread. If
set to true, you can’t update the Ul when any plugin event is raised.
Properties and Methods
1. isDevicePaired():
e for Bluetooth Classic
i. return true if the device is already paired
ii. return false if the device is not paired
o for BLE:
i. Returns true if, after scanning nearby devices, the Bluetooth device is
found
ii. Returns false if, after scanning for nearby devices, the Bluetooth device is
not found
2. SendData(string data):
e Send string data to the Bluetooth devices
3. SendData (byte[] data):
e Send byte array data to the Bluetooth devices
4, Connect()
e Connect to Bluetooth device
e Invokes 2 events:
i. OnConnected: when successfully connected to the device
ii. OnConnectionFailed: when failed to connect to the Bluetooth device
setDeviceName(string deviceName)
6. setDeviceAddress(string deviceAddress)
e These 2 functions set the properties of the device you wish to connect to.

\n

One will override the other. So, you either connect by name or by mac address.
setDeviceAddress function will trigger setDeviceName for I0S or MacOS BLE
since connecting to a device by its mac address on I0S since it’s not supported by
Apple.

These 2 functions are useful if you are trying to connect to multiple devices, so
you set the name of a device,connect, transmit data, call disconnect, set the
name of another device connect and so on...

7. ScanNearbyDevices()

Scan for nearby Bluetooth devices
Return true if scan has started
Calling this function is a must when using BLE technology before connecting to a
BLE device.
Invokes 1 event:
i. OnScanEnded: returns a list of devices found
Not available for Windows PC (Desktop App)

8. getPairedDeviceslList()

returns LinkedList<BluetoothDevice> showing all paired devices
Only available when using Bluetooth classic

9. setlLengthBasedStream()

sets reading and writing mode of the stream based on its length.

Example: Sending {0x02, 0x04, 0x65, OxE5} from unity will result in sending:
{Ox55, 0x55, 0x00, 0x04, 0x02, 0x04, 0x65, OXE5} knowing that 0x00 and 0x04 are
the array length encoded on 2 bytes and 0x55, 0x55 are the preamble, to detect
the start of the message. You don’t have to worry about the encoding procedure
or adding the preamble, as it is done automatically by the plugin.

From the Arduino, to get the message follow this code:
void readBT ()
{
if (Serial.available () >= 2)
{
data length = 0;
//reading the preambles
byte prel = Serial.read();
byte pre2 = Serial.read();
if(prel != 85 || pre2 != 85) return;
while (Serial.available() < 2) continue;
byte x1 = Serial.read();
byte x2 = Serial.read():;

data length = x1 << 8 | x2;

data = new bytel[data length];
i=0;

while (i<data length)

{

if (Serial.available ()==0) {
continue;

}

timeout=0;

data[i++] = Serial.read();

}

// process the data ..

delete[] data;
}}

Now sending messages from the Arduino, {0x02, 0x04, 0x65, OXE5} will be sent
as: {0x55, 0x55, 0x00, 0x04, 0x02, 0x04, 0x65, OXE5}
use this function to send from the arduino:

void sendBT (const byte *data, int length)
{
byte len[4];
//YOU HAVE TO PUT THE PREAMPLE WHEN SENDING FROM THE ARDUINO

len[0] = 85; //preamble

len[l] = 85; //preamble

len[2] = (length >> 8) & 0x000000FF;
len[3] = (length & 0x000000FF) ;

Serial.write(len, 4);
Serial.flush();
Serial.write (data, 1);
Serial.flush{();

}

10. setTerminatorBasedStream(string str)

e set the writing and reading mode based on a terminator string to delimit the
messages. Example, using \n (new line) to delimit incoming messages.
“Hello\nHow are you” will be considered as 2 incoming messages in this case.
This mode is not recommended for binary data transmission unless its delimited
by the null character (\0). (for the moment)

11. setTerminatorBasedStream(string str, bool appendTerminator)
e same as 10, but with the option to append the terminator or not after each sent
message
12. setTerminatorBasedStream(byte[] terminator)
e same as before, but the terminator will be a sequence of bytes.
13. setTerminatorBasedStream(byte[] terminator, bool appendTerminator)

e same as 12, but with the option to append the terminator or not after each sent

message
14. setFixedLengthBasedStream(int length)

e set the reading mode based on the number of received bytes. Each “length”

bytes will be considered 1 message. To get the data, use ReadBytes()
15. setCustomStreamManager(instance of class inheriting from StreamManager)

e set your own way of delimiting messages replying to your protocol

e override formatDataToSend to format data before sending to the Bluetooth
module

e override handleReceivedData : this is where you aggregate your data before rec
eiving if internally through the bluetoothHelperinstance.

e Toinvoke OnDataReceived on the Bluetooth helper instance, call:
this.OnDataReceived.Invoke(byte [] data);

16. StartListening()

e Required only when using stream managers

e Start listening for incoming messages

e Invokes 1 event:

OnDataReceived: called when a message is received
Throws:

i. BluetoothListeningMethodIsNotSetException: when neither of
setTerminatorBasedStream or setlengthBasedStream or
setFixedLengthBasedStream has been called

No need for calling this method when subscribing to custom characteristics in
BLE.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

getGattServices()
e Available for BLE mode only.
e Returns the gatt services and characteristics on a peripheral
setTxCharacteristic(BluetoothHelperCharacteristic characteristic)
e set the transmit characteristic in BLE mode.
e Used when you want to benefit from using any of the stream managers
(setLengthBasedStream, setTerminatorBasedStream...)
setRxCharacteristic(BluetoothHelperCharacteristic characteristic)
e set the reading characteristic
e Used when you want to benefit from using any of the stream managers
(setLengthBasedStream, setTerminatorBasedStream...)
Disconnect()
e Stops listening for incoming messages and disconnects from the Bluetooth
device.
e This method must be called in the OnDestroy() method in a MonoBehaviour

class in case you need to use the Bluetooth in 1 scene:
void OnDestroy ()
{

bluetoothHelperInstance.Disconnect () ;

}

e In case you need to use the plugin in multiple scenes, don’t call this function, but
make sure to close all connections when exiting the app

isConnected()
e returns True if we are connected to the Bluetooth device
Bool Available
e returns True if we have incoming messages waiting to be read
Read()
e Return a string representation of the incoming messages when available
e In case of want binary data representation from the data, use ReadBytes()
ReadBytes()
e Recommended when reading binary data.
EnableBluetooth(bool enable)
e Used to enable/disable Bluetooth using the plugin. ONLY available on Android.
IsBluetoothEnabled()

e Checks if the Bluetooth is enabled or not. Available on Android, MacOS and iOS.

e For MacOS and iOS, it’s not recommended to do the check in the Start function
as it will always return false. A good practice will be in the Update function.

Subscribe(BluetoothHelperService service)

e To subscribe to a characteristic of a service for “Notify, indicate”, create a
BluetoothHelperService instance (constructor takes service UUID) and call
addCharacteristic function (taking BluetoothHelperCharacteristic as a
parameter).

e You can subscribe before or after the connection is established.

Subscribe(BluetoothHelperCharacteristic characteristic)

e Subscribe for notification or indication for the provided characteristic
29. WriteCharacteristic(BluetoothHelperCharacteristic characteristic, byte[] value)
30. WriteCharacteristic(BluetoothHelperCharacteristic characteristic, string value)
e There two functions are used to write a value to a custom characteristic on
which the service name must be set by calling characteristic.setService(string)
e Throws:
i. ServiceNotSetException : service name of the characteristic is null.
ii. ServiceNotFound
iii. CharacteristicNotFound
31. ReadCharacteristic(BluetoothHelperCharacteristic characteristic)
e Read the value of a characteristic asynchronously, result received in event :
OnCharacteristicChanged
e Throws:
i. ServiceNotSetException : service name of the characteristic is null.
ii. ServiceNotFound
iii. CharacteristicNotFound

Events to Listen to

1. OnConnected
OnConnectionFailed
OnDataReceived
OnScanEnded
OnServiceNotFound
OnCharacteristicNotFound
OnDescriptorNotFound
OnCharacteristicChanged

N U WN

These events are already explained above,
To Listen to them, use this syntax:

//this could be written is the Start() function for example
bluetoothHelperInstance.OnConnected += OnConnectedFunction;

void OnConnectedFunction (BluetoothHelper bluetoothHelperInstance)

{
//Yes, we are now connected, maybe we should start listening for incoming messages (:)
bluetoothHelperInstance.StartListening();

}

Or this lambda expression syntax

bluetoothHelperInstance.OnConnected += (helper) => {
helper.StartListening();
bi

bluetoothHelper.OnScanEnded += (helper, nearbyDevices) =>
{
//nearbyDevices is a LinkedList containing nearby devices

bi

bluetoothHelper.OnCharacteristicChanged += (helper, value, characteristic) =>
{

//value is a byte array

//characteristic is a BluetoothHelperCharacteristic instance

Thank you for using this plugin
You can always contact me via email abouzaidan.tony@gmail.com is you have any question.
This plugin will always be Here!

mailto:abouzaidan.tony@gmail.com
https://assetstore.unity.com/packages/slug/98960

	Arduino Unity Plugin
	Requirements
	Supported Devices
	Steps to establish connection
	Bluetooth Classic
	BLE

	BluetoothDevice Class
	Properties

	BluetoothHelper Class
	Static Vars and Methods
	Properties and Methods
	Events to Listen to

